Minimising Sum of Squared Errors

Guillem Riambau. YSS211. Econometrics, Yale-NUS. Spring 2016.

Our problem: we want to find the relationship between x and y. In other words, what is the average effect of increasing x on y?

One possible solution: Minimising sum of squared residuals.

Note: This is only one solution. There are many more. We will see later in the course why, among the linear ones, this seems optimal.

We know that a linear model means $y_i = \alpha + \beta x_i + \varepsilon_i$

We are looking for estimates of α and β , which we will call $\hat{\alpha}$ and $\hat{\beta}$

 α and β are the true population parameters. We cannot observe them, we do not know them. The best we can do is to estimate them using a sample of the population. For instance: let μ_h be the average height of NS men in Singapore. It is very hard to know μ_h , or nearly impossible (Can you measure the height of all NS men at the same day or week?), but we can get a good estimate of it if we get a random sample of NS men and take the average \bar{h} . \bar{h} is hence the estimate of the true population parameter μ_h .

What are errors, and what are residuals?

The **error** of an observed value is the deviation of the observed value from the (unobservable) true value of a quantity of interest (for example, a population mean, like μ_h above).

The **residual** of an observed value is the difference between the observed value and the estimated value of the quantity of interest (like \bar{h} above).

In a regression model:

 $y_i = \alpha + \beta x_i + \varepsilon_i$, ε_i is the error.

But at most we can get estimates of α and β (which we will denote $\hat{\alpha}$ and $\hat{\beta}$), so that $y_i = \hat{\alpha} + \hat{\beta}x_i + \hat{\varepsilon}_i$. $\hat{\varepsilon}_i$ is the residual.

We want to find $\hat{\alpha}$ and $\hat{\beta}$ such that the sum of the ε_i^2 is minimal. Mathematically,

(1)
$$\min_{\alpha,\beta} \sum_{i}^{N} \varepsilon_{i}^{2} = \min_{\alpha,\beta} \sum_{i}^{N} (y_{i} - \alpha - \beta x_{i})^{2}$$

We need to take derivatives with respect to α and β . Hence, our first order conditions are:

[\alpha]
$$\sum_{i}^{N} 2(y_{i} - \alpha - \beta x_{i})(-1) = 0$$
[\beta]
$$\sum_{i}^{N} 2(y_{i} - \alpha - \beta x_{i})(-x_{i}) = 0$$

Take the first one (FOC with respect to α) and develop it:

$$\sum_{i}^{N} 2 (y_{i} - \alpha - \beta x_{i}) (-1) = 0 \qquad \iff$$

$$\sum_{i}^{N} (y_{i} - \alpha - \beta x_{i}) = 0 \qquad \iff$$

$$\sum_{i}^{N} (y_{i} - \beta x_{i}) = \sum_{i}^{N} \alpha \qquad \iff$$

$$\sum_{i}^{N} (y_{i} - \beta x_{i}) = N\alpha \qquad \iff$$

$$\frac{1}{N} \sum_{i}^{N} (y_{i} - \beta x_{i}) = \alpha \qquad \iff$$

$$\bar{y} - \beta \bar{x} = \hat{\alpha}$$

where $\bar{y} = \frac{1}{N} \sum_{i}^{N} y_i$ and $\bar{x} = \frac{1}{N} \sum_{i}^{N} x_i$

Now take the second one (FOC with respect to β) and develop it:

$$\sum_{i}^{N} 2(y_{i} - \alpha - \beta x_{i})(-x_{i}) = 0 \qquad \Longleftrightarrow$$

$$\sum_{i}^{N} (y_{i} - \alpha - \beta x_{i})(x_{i}) = 0 \qquad \Longleftrightarrow$$

$$\sum_{i}^{N} (y_{i} - \alpha)(x_{i}) = \sum_{i}^{N} (\beta x_{i})(x_{i}) \qquad \Longleftrightarrow$$

$$\sum_{i}^{N} (y_{i}x_{i} - \alpha x_{i}) = \beta \sum_{i}^{N} (x_{i}^{2})$$

Plug the last line of (3) (i.e. $\bar{y} - \beta \bar{x} = \hat{\alpha}$) into the FOC with respect to β :

$$\sum_{i}^{N} (y_{i}x_{i} - \alpha x_{i}) = \beta \sum_{i}^{N} (x_{i}^{2}) \iff$$

$$\sum_{i}^{N} (y_{i}x_{i} - (\bar{y} - \beta \bar{x})x_{i}) = \beta \sum_{i}^{N} (x_{i}^{2}) \iff$$

$$\sum_{i}^{N} (y_{i}x_{i} - \bar{y}x_{i}) + \sum_{i}^{N} \beta \bar{x}x_{i} = \beta \sum_{i}^{N} (x_{i}^{2}) \iff$$

$$\sum_{i}^{N} (y_{i}x_{i} - \bar{y}x_{i}) = \beta \sum_{i}^{N} (x_{i}^{2}) - \sum_{i}^{N} \beta \bar{x}x_{i} \iff$$

$$\sum_{i}^{N} (y_{i}x_{i} - \bar{y}x_{i}) = \beta \left(\sum_{i}^{N} x_{i}^{2} - \sum_{i}^{N} \bar{x}x_{i}\right) \iff$$

$$\frac{\sum_{i}^{N} (y_{i}x_{i} - \bar{y}x_{i})}{\left(\sum_{i}^{N} x_{i}^{2} - \sum_{i}^{N} \bar{x}x_{i}\right)} = \hat{\beta}$$

So now we have β as a function of the y_i and x_i only.

Now, can we develop this expression a bit?

Let's start with the numerator in the last line of (5):

$$\sum_{i}^{N} (y_{i}x_{i} - \bar{y}x_{i}) = \sum_{i}^{N} (y_{i}x_{i}) - N\bar{y}\bar{x} = \sum_{i}^{N} (y_{i}x_{i}) - N\bar{y}\bar{x} - N\bar{y}\bar{x} + N\bar{y}\bar{x} = \sum_{i}^{N} (y_{i}x_{i}) - \sum_{i}^{N} (y_{i}\bar{x}) - \sum_{i}^{N} (x_{i}\bar{y}) + \sum_{i}^{N} (\bar{y}\bar{x}) = \sum_{i}^{N} ((y_{i}x_{i}) - (y_{i}\bar{x}) - (x_{i}\bar{y}) + (\bar{y}\bar{x})) = \sum_{i}^{N} (y_{i} - \bar{y})(x_{i} - \bar{x})$$

Now let's switch with the denominator in the last line of (5):

$$\sum_{i}^{N} x_{i}^{2} - \bar{x} \sum_{i}^{N} x_{i} = \sum_{i}^{N} x_{i}^{2} - \bar{x} \sum_{i}^{N} x_{i} - \bar{x} \sum_{i}^{N} x_{i} + \bar{x} \sum_{i}^{N} x_{i} = \sum_{i}^{N} x_{i}^{2} - 2\bar{x} \sum_{i}^{N} x_{i} + \bar{x} \sum_{i}^{N} x_{i} = \sum_{i}^{N} x_{i}^{2} - 2\bar{x} \sum_{i}^{N} x_{i} + \bar{x} N \bar{x} = \sum_{i}^{N} x_{i}^{2} - 2\bar{x} \sum_{i}^{N} x_{i} + N \bar{x}^{2} = \sum_{i}^{N} x_{i}^{2} - 2\bar{x} \sum_{i}^{N} x_{i} + \sum_{i}^{N} \bar{x}^{2} = \sum_{i}^{N} (x_{i}^{2} - 2\bar{x} x_{i} + \bar{x}^{2}) = \sum_{i}^{N} (x_{i}^{2} - 2\bar{x} x_{i} + \bar{x}^{2}) = \sum_{i}^{N} (x_{i} - \bar{x})^{2}$$

Hence, plugging (7) and (6) into (5), we have

(8)
$$\hat{\beta} = \frac{\sum_{i}^{N} (y_{i} - \bar{y}) (x_{i} - \bar{x})}{\sum_{i}^{N} (x_{i} - \bar{x})^{2}}$$

and so

(9)
$$\hat{\alpha} = \bar{y} - \hat{\beta}\bar{x} \iff \hat{\alpha} = \bar{y} - \frac{\sum_{i}^{N} (y_{i} - \bar{y}) (x_{i} - \bar{x})}{\sum_{i}^{N} (x_{i} - \bar{x})^{2}} \bar{x}$$